
Margin Infused Relaxed Algorithm (MIRA)
for Moses

Eva Hasler, Barry Haddow, Philipp Koehn

Institute for Language, Cognition and Computation, University of Edinburgh

September 7, 2011



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

1 Introduction
Background
Motivation

2 MIRA implementation for Moses
Selecting constraints
Main parameters
Stopping criterion and final weight selection
Parallelization
Usage

3 Experiments
MERT and MIRA results for models with core features
MIRA results for models with large feature sets
Parallelization
Start weights

4 Conclusions and Future work



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Background

Log-linear model

typical core features of statistical machine translation (SMT)
models: phrase translation model, language model, reordering
model

generative features as well as arbitrary features (no
probabilistic interpretation), e.g. word or phrase penalty

combined in a log-linear model → weighted score of all
feature functions

P(e,d|f) =
exp

∑K
k=1 λkhk(e,d,f)∑

e’,d’ exp
∑K

k=1 λkhk(e’,d’,f)



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Background

Adding features

can improve discriminative power by adding more feature
functions hk

more fine-grained, e.g. binary phrase features

by assigning a weight λi to each of them, let the parameter
tuning algorithm choose useful features

features growing in the thousands or millions pose a challenge
for parameter tuning algorithms..

hk(fi , ei ) =

{
1, if fi=“kleines Haus” and ei=“small house”

0, otherwise



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Background

MIRA [Crammer and Singer, 2003]

online large margin algorithm (originally for multi-class
classification)

ultra-conservative: weights are only updated when algorithm
makes a mistake

online update with margin-dependent learning rate

margin can be tied to a loss function like BLEU

tune model such that model score difference between two
translations reflects the loss in BLEU between them

important: selection of oracle translations and competing
translations



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Background

Tuning weights with MIRA

Initialize: weight vector w
Loop: For t = 1, 2, ...,T (T = max. number of epochs)

For all input sentences fi ∈ {f1, .., fn}:
translate fi with current weights → n-best list(s) of ei

select oracle translation e∗i and competing translation(s) eij

form constraints of the form

(h(e∗i )− h(eij)) ·w ≥ loss(e∗i , eij) ∀j

seek smallest update w’ subject to constraints

Output: averaged final weight vector w



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Background

Constrained optimization problem

wt+1 = argminw
1

2
‖w−wt‖2 + C

∑
j

ξj

subject to

lossj −∆hj ·w ≤ ξj , ∀j ∈ J ⊆ {1, ..,m}

Update rule

wt+1 = wt +
∑
j

αj∆hj

Solving for step size α in case of a single constraint

α = min

{
C ,

loss −∆h ·w
‖∆h‖2

}



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Motivation

Motivation: Problems with Minimum Error Rate Training

can only tune 15-30 parameters reliably

needs reasonable start weights

results vary considerably between different runs

MIRA has been suggested for tuning MT system with larger
feature sets

[Arun and Koehn, 2007] explored training a phrase-based
SMT system in a discriminative fashion with MIRA

[Watanabe et al., 2007], [Chiang et al., 2009] added
thousands of features to their baseline systems and tuned with
MIRA

need method for tuning feature-rich system within Moses
toolkit for progress in feature engineering



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Motivation

Motivation: Problems with Minimum Error Rate Training

can only tune 15-30 parameters reliably

needs reasonable start weights

results vary considerably between different runs

MIRA has been suggested for tuning MT system with larger
feature sets

[Arun and Koehn, 2007] explored training a phrase-based
SMT system in a discriminative fashion with MIRA

[Watanabe et al., 2007], [Chiang et al., 2009] added
thousands of features to their baseline systems and tuned with
MIRA

need method for tuning feature-rich system within Moses
toolkit for progress in feature engineering



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Selecting constraints

MIRA implementation for Moses



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Selecting constraints

Constraints for computing weight updates

oracle and hypothesis selection (1): [Chiang et al., 2008]

10-best list according to best model score
“good“ 10-best list (hope) according to
ê = arg maxe (model score(e) + approx. BLEU score(e))
(best from this list is oracle)
”bad“ 10-best list (fear) according to
ê = arg maxe (model score(e) - approx. BLEU score(e))
pair translations for all lists

oracle and hypothesis selection (2):
use only the hope and fear lists

Solving optimization problems

number and type of constraints can vary

closed-form solution for update with single constraint

Hildreth’s algorithm for multiple constraints



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Selecting constraints

Constraints for computing weight updates

oracle and hypothesis selection (1): [Chiang et al., 2008]

10-best list according to best model score
“good“ 10-best list (hope) according to
ê = arg maxe (model score(e) + approx. BLEU score(e))
(best from this list is oracle)
”bad“ 10-best list (fear) according to
ê = arg maxe (model score(e) - approx. BLEU score(e))
pair translations for all lists

oracle and hypothesis selection (2):
use only the hope and fear lists

Solving optimization problems

number and type of constraints can vary

closed-form solution for update with single constraint

Hildreth’s algorithm for multiple constraints



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Selecting constraints

Constraints for computing weight updates

oracle and hypothesis selection (1): [Chiang et al., 2008]

10-best list according to best model score
“good“ 10-best list (hope) according to
ê = arg maxe (model score(e) + approx. BLEU score(e))
(best from this list is oracle)
”bad“ 10-best list (fear) according to
ê = arg maxe (model score(e) - approx. BLEU score(e))
pair translations for all lists

oracle and hypothesis selection (2):
use only the hope and fear lists

Solving optimization problems

number and type of constraints can vary

closed-form solution for update with single constraint

Hildreth’s algorithm for multiple constraints



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Main parameters

Some parameters for MIRA training

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best
lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight
vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--slack MIRA updates can be regularized (def: 0.01); smaller
values mean more regularization, 0 means no regularization
(parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false)
sentence-level BLEU (+1 for n>1) or approximate document-level
BLEU using a history as suggested by [Chiang et al., 2008]



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Stopping criterion and final weight selection

Stopping criterion and final weight selection

MIRA stops when no update has been performed during a full
epoch

when during three consecutive epochs the sum of all updates
in each dimension has not changed by more than a predefined
value

possible to set a decreasing learning rate that reduces update
size as training progresses

final weights:
best weights according to performance on held-out set during
5-10 training epochs (further epochs do not seem to improve
results)



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Parallelization

Parallelization with iterative parameter mixing

parallelization of online learning methods not straightforward,
because updates build on top of each other sequentially

iterative parameter mixing : [McDonald et al., 2010] proposed
variation of parameter mixing strategy

training data is split into n shards, n processors

each processor updates its weight vector only according to its
shard

resulting n weight vectors are mixed after each training epoch

McDonald et al. showed that iterative parameter mixing yields
performance as good as or better than training serially



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Parallelization

Parallelization with iterative parameter mixing

parallelization of online learning methods not straightforward,
because updates build on top of each other sequentially

iterative parameter mixing : [McDonald et al., 2010] proposed
variation of parameter mixing strategy

training data is split into n shards, n processors

each processor updates its weight vector only according to its
shard

resulting n weight vectors are mixed after each training epoch

McDonald et al. showed that iterative parameter mixing yields
performance as good as or better than training serially



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Parallelization

Parallelization with iterative parameter mixing

parallelization of online learning methods not straightforward,
because updates build on top of each other sequentially

iterative parameter mixing : [McDonald et al., 2010] proposed
variation of parameter mixing strategy

training data is split into n shards, n processors

each processor updates its weight vector only according to its
shard

resulting n weight vectors are mixed after each training epoch

McDonald et al. showed that iterative parameter mixing yields
performance as good as or better than training serially



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Parallelization

MPI used for
parellelization
(e.g. OpenMPI)

mix parameters n
times per epoch

0: no mixing,
average at the end



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Usage

MIRA implementation currently located in sourceforge git repository
git://mosesdecoder.git.sourceforge.net/gitroot/mosesdecoder/mosesdecoder,
branch miramerge

To start MIRA, run:
mira -f moses.ini -i source-file -r reference-file or
training-expt.perl -config expt.cfg -exec

if jobs=n, n > 1 in config file, several mira processes are
started with mpirun

training script decodes heldout set with dumped weight file
and computes BLEU score on heldout set

caching of translation options should be switched off in
moses.ini file ([use-persistent-cache] 0)



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Data and experimental setup:

news commentary corpus (∼85K/100K parallel sentences),
nc-dev, nc-devtest, nc-test, news-test

language pairs en-de, en-fr, de-en

one oracle and one hypothesis translation per example
(1 hope/1 fear)

sentence-level BLEU (+1 for n-grams with n > 1)

uniform start weights

8 parallel processors



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

MERT and MIRA results for models with core features

MERT and MIRA results for models with 14 core features

Lang. pair BLEU(dev test) σ BLEU(test1) BLEU(test2)

en-de 17.6 0.083 15.1 11.0
en-fr 28.2 0.045 15.2 17.7
de-en 26.5 0.082 22.9 15.5

Average results of 3 MERT runs

Lang. pair BLEU(dev test) σ BLEU(test1) BLEU(test2)

en-de 17.7 0.013 14.9 11.1
en-fr 28.3 0.077 15.2 17.8
de-en 26.6 0.041 23.2 15.4

en-de 17.6 0.024 14.8 11.2
en-fr 28.0 0.059 15.3 17.8
de-en 26.5 0.039 23.3 15.3

Average results of 3 shuffled MIRA runs (top: 10 epochs, bottom: 5)



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

MERT and MIRA results for models with core features

Run times:

MERT using 8 threads:
10-21 hours for training (for 7-14 iterations)

MIRA using 8 parallel processors:
4 hours for 5 iterations, 8 hours for 10 iterations (plus some extra
time for decoding devtest set)



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

MIRA results for models with large feature sets

MIRA results for models with large feature sets

Lang. pair en-de

core features 17.7 (0.981)
core + word TB features 17.8 (0.984)
core + POS TB features 17.7 (0.986)

Average BLEU scores on dev. test set (3 MIRA runs) over 10 epochs,

length ratio in brackets

target word bigrams (TB): 33,300 active features

POS bigrams: 1,400 active features

comparable performance when training core + sparse features,
possibly undertraining sparse features



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

MIRA results for models with large feature sets

Feature name Feature weight

Distortion 0.207147
WordPenalty -1.34204

LM 0.645341

dlmb <s>:ART 0.247516
dlmb <s>:NN -0.10823

dlmb ADJ:NN 0.137049
dlmb NN:ADJ -0.164686

Example feature weights of model with core + POS TB features

dlmb <s>:ART got positive weight, dlmb <s>:NN got
negative weight
→ model prefers German sentences starting with determiner

model learned that adjective is likely to preceed noun in
German, not likely to follow noun



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Parallelization

Lang. pair # processors Best BLEU(dev. test set)

en-de

1 17.7
2 17.7
4 17.7
8 17.7

en-fr

1 28.3
2 28.4
4 28.2
8 28.3

de-en

1 26.6
2 26.6
4 26.6
8 26.5

best results during 10 epochs, mixing frequency 5

doubling number of processors reduces training time by half

no systematic differences for varying number of processors



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Start weights

WP start 1 2 3 4 5 6 7 8 9 10

0.1 -0.3 -0.6 -0.9 -1.0 -1.1 -1.3 -1.3 -1.4 -1.5 -1.5

-1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.6 -1.6 -1.7

Word penalty weight after each epoch, uniform vs. preset start weight

MERT usually initialized with feature weights from past
experience (lm=0.5, tm=0.2, wp=-1, ..)

MIRA results were achieved with uniform start weights (0.1)

weights become similar after some epochs

best result with uniform start weights: BLEU=17.68

best result with preset start weights: BLEU=17.66

performance reached more quickly with preset start weights



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Start weights

WP start 1 2 3 4 5 6 7 8 9 10

0.1 -0.3 -0.6 -0.9 -1.0 -1.1 -1.3 -1.3 -1.4 -1.5 -1.5

-1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.6 -1.6 -1.7

Word penalty weight after each epoch, uniform vs. preset start weight

MERT usually initialized with feature weights from past
experience (lm=0.5, tm=0.2, wp=-1, ..)

MIRA results were achieved with uniform start weights (0.1)

weights become similar after some epochs

best result with uniform start weights: BLEU=17.68

best result with preset start weights: BLEU=17.66

performance reached more quickly with preset start weights



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Conclusions

presented an open-source implementation of the Margin
Infused Relaxed Algorithm for Moses toolkit

reported results on core features sets and larger sparse feature
sets

showed that MIRA yields comparable performance to MERT
with core features, can handle much larger feature sets

can be run on parallel processors with negligible or no loss

works well with uniform start weights

Future work

multi-threading

validate for more language pairs and data sets

more sparse features



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Conclusions

presented an open-source implementation of the Margin
Infused Relaxed Algorithm for Moses toolkit

reported results on core features sets and larger sparse feature
sets

showed that MIRA yields comparable performance to MERT
with core features, can handle much larger feature sets

can be run on parallel processors with negligible or no loss

works well with uniform start weights

Future work

multi-threading

validate for more language pairs and data sets

more sparse features



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Thank you!



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

Arun, A. and Koehn, P. (2007).
Online Learning Methods For Discriminative Training of
Phrase Based Statistical Machine Translation.
In MT Summit XI, 2007, Copenhagen.

Chiang, D., Knight, K., and Wang, W. (2009).
11,001 new features for statistical machine translation.
In Proceedings of Human Language Technologies: The 2009
Annual Conference of the NACL, Stroudsburg, PA, USA. ACL.

Chiang, D., Marton, Y., and Resnik, P. (2008).
Online large-margin training of syntactic and structural
translation features.
In Proceedings of EMNLP 08, Morristown, NJ, USA. ACL.

Crammer, K. and Singer, Y. (2003).
Ultraconservative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3(4-5):951–991.



Outline Introduction MIRA implementation for Moses Experiments Conclusions and Future work

McDonald, R., Hall, K., and Mann, G. (2010).
Distributed Training Strategies for the Structured Perceptron.
In Human Language Technologies: The 2010 Annual
Conference of the NACL, pages 456–464, Los Angeles,
California. ACL.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H.
(2007).
Online large-margin training for statistical machine translation.

In Proceedings of EMNLP-CoNLL, pages 764–773, Prague.
ACL.


	Outline
	Introduction
	Background
	Motivation

	MIRA implementation for Moses
	Selecting constraints
	Main parameters
	Stopping criterion and final weight selection
	Parallelization
	Usage

	Experiments
	MERT and MIRA results for models with core features
	MIRA results for models with large feature sets
	Parallelization
	Start weights

	Conclusions and Future work

