Margin Infused Relaxed Algorithm (MIRA) for Moses

Eva Hasler, Barry Haddow, Philipp Koehn

Institute for Language, Cognition and Computation, University of Edinburgh

September 7, 2011

- Introduction
 - Background
 - Motivation
- MIRA implementation for Moses
 - Selecting constraints
 - Main parameters
 - Stopping criterion and final weight selection
 - Parallelization
 - Usage
- 3 Experiments
 - MERT and MIRA results for models with core features
 - MIRA results for models with large feature sets
 - Parallelization
 - Start weights
- Conclusions and Future work

Log-linear model

- typical core features of statistical machine translation (SMT) models: phrase translation model, language model, reordering model
- generative features as well as arbitrary features (no probabilistic interpretation), e.g. word or phrase penalty
- ullet combined in a log-linear model o weighted score of all feature functions

$$P(\mathbf{e},\mathbf{d}|\mathbf{f}) = \frac{\exp \sum_{k=1}^{K} \lambda_k h_k(\mathbf{e},\mathbf{d},\mathbf{f})}{\sum_{\mathbf{e}',\mathbf{d}'} \exp \sum_{k=1}^{K} \lambda_k h_k(\mathbf{e}',\mathbf{d}',\mathbf{f})}$$

Adding features

- ullet can improve discriminative power by adding more feature functions h_k
- more fine-grained, e.g. binary phrase features
- by assigning a weight λ_i to each of them, let the parameter tuning algorithm choose useful features
- features growing in the thousands or millions pose a challenge for parameter tuning algorithms..

$$h_k(f_i, e_i) = \begin{cases} 1, & \text{if } f_i = \text{``kleines Haus''} \text{ and } e_i = \text{``small house''} \\ 0, & \text{otherwise} \end{cases}$$

MIRA [Crammer and Singer, 2003]

- online large margin algorithm (originally for multi-class classification)
- ultra-conservative: weights are only updated when algorithm makes a mistake
- online update with margin-dependent learning rate
- margin can be tied to a loss function like BLEU
- tune model such that model score difference between two translations reflects the loss in BLEU between them
- important: selection of oracle translations and competing translations

Tuning weights with MIRA

Initialize: weight vector w

Loop: For t = 1, 2, ..., T (T = max. number of epochs)

- For all input sentences $f_i \in \{f_1, .., f_n\}$:
- translate f_i with current weights \rightarrow n-best list(s) of e_i
- ullet select oracle translation e_i^* and competing translation(s) e_{ij}
- form constraints of the form

$$(\mathbf{h}(e_i^*) - \mathbf{h}(e_{ij})) \cdot \mathbf{w} \ge loss(e_i^*, e_{ij}) \quad \forall j$$

• seek smallest update w' subject to constraints

Output: averaged final weight vector w

Constrained optimization problem

$$\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C \sum_{j} \xi_j$$

subject to

$$loss_j - \Delta \mathbf{h}_j \cdot \mathbf{w} \le \xi_j, \quad \forall j \in J \subseteq \{1, ..., m\}$$

Update rule

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \sum_{i} \alpha_i \Delta \mathbf{h}_i$$

Solving for step size α in case of a single constraint

$$\alpha = \min \left\{ C, \frac{loss - \Delta \mathbf{h} \cdot \mathbf{w}}{\|\Delta \mathbf{h}\|^2} \right\}$$

Motivation: Problems with Minimum Error Rate Training

- can only tune 15-30 parameters reliably
- needs reasonable start weights
- results vary considerably between different runs

Motivation: Problems with Minimum Error Rate Training

- can only tune 15-30 parameters reliably
- needs reasonable start weights
- results vary considerably between different runs

MIRA has been suggested for tuning MT system with larger feature sets

- [Arun and Koehn, 2007] explored training a phrase-based SMT system in a discriminative fashion with MIRA
- [Watanabe et al., 2007], [Chiang et al., 2009] added thousands of features to their baseline systems and tuned with MIRA
- need method for tuning feature-rich system within Moses toolkit for progress in feature engineering

Selecting constraints

MIRA implementation for Moses

Constraints for computing weight updates

- oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (hope) according to $\hat{e} = arg max_e (model score(e) + approx. BLEU score(e))$ (best from this list is oracle)

- "bad" 10-best list (fear) according to $\hat{e} = arg max_e$ (model score(e) - approx. BLEU score(e))
- pair translations for all lists

Constraints for computing weight updates

- oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (hope) according to
 ê = arg max_e (model score(e) + approx. BLEU score(e))
 (best from this list is oracle)
 - "bad" 10-best list (fear) according to
 ê = arg max_e (model score(e) approx. BLEU score(e))
 - pair translations for all lists
- oracle and hypothesis selection (2):
 use only the hope and fear lists

Constraints for computing weight updates

- oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (hope) according to $\hat{e} = arg max_e$ (model score(e) + approx. BLEU score(e)) (best from this list is oracle)
 - "bad" 10-best list (fear) according to $\hat{e} = arg max_e$ (model score(e) - approx. BLEU score(e))
 - pair translations for all lists
- oracle and hypothesis selection (2): use only the hope and fear lists

Solving optimization problems

- number and type of constraints can vary
- closed-form solution for update with single constraint
- Hildreth's algorithm for multiple constraints

- --hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above
- --nbest,n size of n-best lists

Experiments

- --hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above
- --nbest.n size of n-best lists
- **--shuffle** shuffle dev. set to avoid sequence bias (def: false)

Experiments

- --hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above
- --nbest,n size of n-best lists
- --shuffle shuffle dev. set to avoid sequence bias (def: false)
- --average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch

- --hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above
- --nbest,n size of n-best lists
- --shuffle shuffle dev. set to avoid sequence bias (def: false)
- --average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch
- --batch-size number of sentences processed as batch (def: 1)

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

- --nbest.n size of n-best lists
- --shuffle shuffle dev. set to avoid sequence bias (def: false)
- --average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch
- --batch-size number of sentences processed as batch (def: 1)
- --slack MIRA updates can be regularized (def: 0.01); smaller values mean more regularization, 0 means no regularization (parameter C in objective)

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

- --nbest,n size of n-best lists
- --shuffle shuffle dev. set to avoid sequence bias (def: false)
- --average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch
- --batch-size number of sentences processed as batch (def: 1)
- --slack MIRA updates can be regularized (def: 0.01); smaller values mean more regularization, 0 means no regularization (parameter C in objective)
- --sentence-bleu (def: true), --history-of-1best (def: false) sentence-level BLEU (+1 for n>1) or approximate document-level BLEU using a history as suggested by [Chiang et al., 2008]

Stopping criterion and final weight selection

 MIRA stops when no update has been performed during a full epoch

- when during three consecutive epochs the sum of all updates in each dimension has not changed by more than a predefined value
- possible to set a decreasing learning rate that reduces update size as training progresses
- final weights: best weights according to performance on held-out set during 5-10 training epochs (further epochs do not seem to improve results)

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- iterative parameter mixing: [McDonald et al., 2010] proposed variation of parameter mixing strategy

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- *iterative parameter mixing*: [McDonald et al., 2010] proposed variation of parameter mixing strategy
- training data is split into *n* shards, *n* processors
- each processor updates its weight vector only according to its shard

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- iterative parameter mixing: [McDonald et al., 2010] proposed variation of parameter mixing strategy
- training data is split into *n* shards, *n* processors
- each processor updates its weight vector only according to its shard
- resulting *n* weight vectors are mixed after each training epoch
- McDonald et al. showed that iterative parameter mixing yields performance as good as or better than training serially

MPI include file

Declarations, prototypes, etc.

Program Begins

Serial code

Initialize MPI environment

Parallel code begins

Do work & make message passing calls

Terminate MPI environment Parallel code ends

Serial code

Program Ends

 MPI used for parellelization (e.g. OpenMPI)

- mix parameters n times per epoch
- 0: no mixing, average at the end

MIRA implementation currently located in sourceforge git repository git://mosesdecoder.git.sourceforge.net/gitroot/mosesdecoder/mosesdecoder, branch $\it miramerge$

To start MIRA, run:

mira -f moses.ini -i source-file -r reference-file or training-expt.perl -config expt.cfg -exec

- if jobs=n, n > 1 in config file, several mira processes are started with mpirun
- training script decodes heldout set with dumped weight file and computes BLEU score on heldout set
- caching of translation options should be switched off in moses.ini file ([use-persistent-cache] 0)

Data and experimental setup:

- news commentary corpus (~85K/100K parallel sentences),
 nc-dev, nc-devtest, nc-test, news-test
- language pairs en-de, en-fr, de-en
- one oracle and one hypothesis translation per example (1 hope/1 fear)
- ullet sentence-level BLEU (+1 for n-grams with n>1)
- uniform start weights
- 8 parallel processors

MERT and MIRA results for models with 14 core features

Lang. pair	BLEU(dev test)	σ	BLEU(test1)	BLEU(test2)
en-de	17.6	0.083	15.1	11.0
en-fr	28.2	0.045	15.2	17.7
de-en	26.5	0.082	22.9	15.5

Average results of 3 MERT runs

Lang. pair	BLEU(dev test)	σ	BLEU(test1)	BLEU(test2)	
en-de	17.7	0.013	14.9	11.1	
en-fr	28.3	0.077	15.2	17.8	
de-en	26.6	0.041	23.2	15.4	
en-de	17.6	0.024	14.8	11.2	
en-fr	28.0	0.059	15.3	17.8	
de-en	26.5	0.039	23.3	15.3	

Average results of 3 shuffled MIRA runs (top: 10 epochs, bottom: 5)

Run times:

Outline

MERT using 8 threads:

10-21 hours for training (for 7-14 iterations)

MIRA using 8 parallel processors:

4 hours for 5 iterations, 8 hours for 10 iterations (plus some extra time for decoding devtest set)

MIRA results for models with large feature sets

Lang. pair	en-de
core features	17.7 (0.981)
core + word TB features	17.8 (0.984)
core + POS TB features	17.7 (0.986)

Average BLEU scores on dev. test set (3 MIRA runs) over 10 epochs, length ratio in brackets

- target word bigrams (TB): 33,300 active features
- POS bigrams: 1,400 active features
- comparable performance when training core + sparse features, possibly undertraining sparse features

Feature name	Feature weight
Distortion	0.207147
WordPenalty	-1.34204
LM	0.645341
dlmb_ <s>:ART</s>	0.247516
dlmb_ <s>:NN</s>	-0.10823
dlmb_ADJ:NN	0.137049
dlmb_NN:ADJ	-0.164686

Example feature weights of model with core + POS TB features

- dlmb_<s>:ART got positive weight, dlmb_<s>:NN got negative weight
 - ightarrow model prefers German sentences starting with determiner
- model learned that adjective is likely to preceed noun in German, not likely to follow noun

Lang. pair	# processors	Best BLEU(dev. test set)
	1	17.7
	2	17.7
en-de	4	17.7
	8	17.7
	1	28.3
	2	28.4
en-fr	4	28.2
	8	28.3
	1	26.6
	2	26.6
de-en	4	26.6
	8	26.5

- best results during 10 epochs, mixing frequency 5
- doubling number of processors reduces training time by half
- no systematic differences for varying number of processors

WP start	1	2	3	4	5	6	7	8	9	10
0.1	-0.3	-0.6	-0.9	-1.0	-1.1	-1.3	-1.3	-1.4	-1.5	-1.5
-1	-1.1	-1.2	-1.3	-1.4	-1.5	-1.5	-1.6	-1.6	-1.6	-1.7

Word penalty weight after each epoch, uniform vs. preset start weight

- MERT usually initialized with feature weights from past experience (lm=0.5, tm=0.2, wp=-1, ..)
- MIRA results were achieved with uniform start weights (0.1)
- weights become similar after some epochs

Outline
Start weights

WP start	1	2	3	4	5	6	7	8	9	10
0.1	-0.3	-0.6	-0.9	-1.0	-1.1	-1.3	-1.3	-1.4	-1.5	-1.5
-1	-1.1	-1.2	-1.3	-1.4	-1.5	-1.5	-1.6	-1.6	-1.6	-1.7

Word penalty weight after each epoch, uniform vs. preset start weight

- MERT usually initialized with feature weights from past experience (Im=0.5, tm=0.2, wp=-1, ..)
- MIRA results were achieved with uniform start weights (0.1)
- weights become similar after some epochs
- best result with uniform start weights: BLEU=17.68
- best result with preset start weights: BLEU=17.66
- performance reached more quickly with preset start weights

Conclusions

- presented an open-source implementation of the Margin Infused Relaxed Algorithm for Moses toolkit
- reported results on core features sets and larger sparse feature sets
- showed that MIRA yields comparable performance to MERT with core features, can handle much larger feature sets
- can be run on parallel processors with negligible or no loss
- works well with uniform start weights

Conclusions

- presented an open-source implementation of the Margin Infused Relaxed Algorithm for Moses toolkit
- reported results on core features sets and larger sparse feature sets
- showed that MIRA yields comparable performance to MERT with core features, can handle much larger feature sets
- can be run on parallel processors with negligible or no loss
- works well with uniform start weights

Future work

- multi-threading
- validate for more language pairs and data sets
- more sparse features

Thank you!

- Arun, A. and Koehn, P. (2007).
 Online Learning Methods For Discriminative Training of Phrase Based Statistical Machine Translation.
 - In MT Summit XI, 2007, Copenhagen.
- Chiang, D., Knight, K., and Wang, W. (2009).

 11,001 new features for statistical machine translation.

 In Proceedings of Human Language Technologies: The 2009

 Annual Conference of the NACL, Stroudsburg, PA, USA. ACL.
- Chiang, D., Marton, Y., and Resnik, P. (2008).
 Online large-margin training of syntactic and structural translation features.
 In *Proceedings of EMNLP 08*, Morristown, NJ, USA. ACL.
- Crammer, K. and Singer, Y. (2003).
 Ultraconservative online algorithms for multiclass problems.

 Journal of Machine Learning Research, 3(4-5):951–991.

McDonald, R., Hall, K., and Mann, G. (2010). Distributed Training Strategies for the Structured Perceptron. In *Human Language Technologies: The 2010 Annual Conference of the NACL*, pages 456–464, Los Angeles, California, ACL.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007).

Online large-margin training for statistical machine translation.

In *Proceedings of EMNLP-CoNLL*, pages 764–773, Prague. ACL.